目前,碳化硅(SiC)这种半导体材料因其在电力电子应用中的出色表现引起了广泛的关注。对晶圆和器件的研究在近年来已经取得很大进展。如今,各供应商已可批量生产电压等级高达1.2 kV的二极管和晶体管,部分技术改进正在进行当中。目前还没有大型的高压碳化硅器件,但预计未来将会很快推出。虽然大家都在为碳化硅器件带来的机遇而激动,但这些器件在装配、互联和封装技术上还面临着一些新的难题。创新的封装方案不可或缺!
碳化硅器件的优点是什么?
碳化硅是一种宽禁带(WBG)半导体材料。禁带通常是指价带和导带之间的电子伏(eV)能差。价电子和原子结合形成传导电子需要这种能量,而这种传导电子可在晶格中自由移动,并可作为电荷载子导电。绝缘体拥有极高的禁带宽度,通常要高于4eV。
碳化硅的禁带宽度是硅材料的3倍,击穿电场的大小则是后者的10倍。这意味着,在相同的闭塞电压下,碳化硅器件的漂移区域间隔可以减少至硅器件的十分之一。此外,就漂移区域的掺杂浓度而言,碳化硅器件比硅器件高100倍。大部分高阻塞电压功率器件的导通电阻都是漂移区电阻。因此,在相同的闭塞电压下,碳化硅器件的导通电阻(RDSon)是硅功率器件的千分之一。
碳化硅的电子漂移速度是硅材料的两倍左右。此外,在相同的闭塞电压下,碳化硅器件的漂移距离比硅器件要短。所有这些特性都表明,与硅器件相比,碳化硅器件可在更高的开关频率下工作。
最后,碳化硅的热导率是硅材料的三倍左右。此外,碳化硅的半导体固有温度远高于1000°C。因此,在高温环境下,碳化硅器件的稳定性要优于硅器件。
对市场和应用的影响
与硅器件相比,碳化硅器件拥有更低的运行损耗、更快的开关速度和更出色的高温工作稳定性。这些特征能带来许多系统优势,对于下一代电源模块很有吸引力。
高温稳定性意味着碳化硅不仅可以在更高的温度下工作,而且还可以经受住不时出现的温峰(取决于任务要求)。此外,更高的开关频率能够减少产品的大小和重量,因为笨重的磁性组件被换成外形更小的元件。最后,更快的开关时间和更低的导通电阻能够减少开关和传导损耗,进而提高系统效率。
即使碳化硅属于价格(更)高的组件,系统成本通常也能得到降低。但这需要进行详尽的调查,因为碳化硅对所有常用的电力电子应用而言情况不同。Power America和欧洲电力电子中心(ECPE)等组织发布了宽禁带路线图,表明了基于碳化硅的电源模块的主要市场和应用场景。光伏逆变器、不间断电源(UPS)和电动汽车的逆变器可在短期内从碳化硅中获利,而高电压应用的实现还需要一定时间。